Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Comput Biol ; 19(3): e1010856, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2293880

RESUMEN

Computational models of infectious diseases have become valuable tools for research and the public health response against epidemic threats. The reproducibility of computational models has been limited, undermining the scientific process and possibly trust in modeling results and related response strategies, such as vaccination. We translated published reproducibility guidelines from a wide range of scientific disciplines into an implementation framework for improving reproducibility of infectious disease computational models. The framework comprises 22 elements that should be described, grouped into 6 categories: computational environment, analytical software, model description, model implementation, data, and experimental protocol. The framework can be used by scientific communities to develop actionable tools for sharing computational models in a reproducible way.


Asunto(s)
Enfermedades Transmisibles , Humanos , Reproducibilidad de los Resultados , Enfermedades Transmisibles/epidemiología , Programas Informáticos , Salud Pública , Simulación por Computador
2.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-2122676

RESUMEN

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

3.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1903837

RESUMEN

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética , Estados Unidos/epidemiología , Vacunación
4.
American Journal of Public Health ; 112(6):839-842, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-1877289

RESUMEN

[...]models can vary in terms of what data they use, what they assume about transmission, and what analytic approach they use to produce projections. Because of this, relying on one model is dangerous because there is no guarantee that one model's choices and assumptions will yield an accurate prediction. In many fields, there is a long tradition of combining multiple models to mitigate this limitation by providing a single prediction that summarizes the view of the participating models.7 There has been a growing interest in using ensemble methodologies in epidemiology, with notable efforts in forecasting, risk prediction, causal inference, and decision-making.8-12 COORDINATION, COLLABORATION, AND EVALUATION A modeling "hub" is a consortium of research groups organized around a particular scientific challenge. The US COVID-19 Forecast Hub ensemble (including many component models) has struggled to produce accurate forecasts of cases and hospitalizations during periods of rapidly changing epidemic dynamics, such as the US peak of the winter wave in early 2021 or the rapid increases associated with the Delta variant in summer 2021 or in winter 2021-2022.3 Likewise, although longer-term projections from the COVID-19 Scenario Modeling Hub projected a Delta-associated resurgence in the United States, the ensemble significantly underestimated its speed and size, even though there were no clear deviations from scenario assumptions.13 However, even when projections are wrong, the hubs play a role in enhancing the scientific rigor and integrity of epidemic modeling. [...]operationally, there is value in developing procedures that harness the insights of a diverse network of scientists while guarding against groupthink and overconfidence.12 As researchers, system developers, and public health officials who have been deeply involved in the real-time operation of modeling hubs duringthe COVID-19 pandemic and prior epidemics, we believe the hub approach is a vital path forward for predictive disease modeling efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA